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This paper presents numerical calculations of the self-excited oscillations of an 
incompressible planar jet impinging upon a wedge for a Reynolds-number range of 
250-650. For this Reynolds-number range these flows are experimentally observed 
to be two-dimensional and laminar. A finite-difference vorticity/stream-function 
formulation of the Navier-Stokes equations is employed. The self-sustained flow 
oscillations result in not just one but several well-defined flow frequency components 
due to  nonlinear interaction of two primary components : the most unstable frequency 
(p) of the jet shear layer and a low-frequency modulating component ($). The 
modulating component results from vortex-vortex interaction a t  the impingement 
edge of both like and counter-rotating vortices. Although the interaction pattern 
varies through the Reynolds-number range studied, the pattern adjusts itself to  
maintain the modulating component $/3 which has a strong upstream influence. 
The numerical results, in agreement with experimental results, strongly suggest the 
occurrence of such phenomena as frequency jumps and hysteresis. Pressure a t  the 
wedge surface has been calculated and compared with experimental results. 
Numerical results for wedge torque and lift, which have not been experimentally 
measured, have also been obtained. 

1. Introduction 
Significant advancement in understanding the impingement of a planar jet upon 

an edge has resulted from the earlier theoretical investigations of Powell (1961) and 
the more recent investigations summarized by Rockwell (1983). Therefore, i t  is well 
known that impingement of a planar jet upon an edge can give rise to  strongly 
coherent, self-sustained oscillations whose main features are schematically displayed 
in figure 1 (a) .  These features are (i) amplification of unstable disturbances in the shear 
layer of the jet associated with a downstream travelling instability wave, (ii) 
impingement of this amplified disturbance (i.e. vorticity field) upon the wedge, (iii) 
feedback or upstream influence of this unsteady interaction a t  the impingement edge 
and (iv) conversion of this feedback to vorticity fluctuations in the sensitive region 
of the shear layer near the nozzle opening. The entire cycle then repeats with the latest 
vorticity fluctuations being amplified and so on. 

One of the most interesting aspects of jet-edge flows was discussed in detail by 
Powell (1961) and more recently by Rockwell (1983). These jet-edge flows exhibit 
jumps in oscillation frequency as well as hysteresis, when the impingement length 
(the distance from the nozzle opening to the wedge tip) or the average velocity U 
of the nozzle flow is varied. Figure 1 ( b )  schematically represents these upward and 
downward jumps in frequency f and the associated hysteresis loop for the case where 
the flow velocity U is first increased, then decreased, as indicated by the arrows. An 
inherent assumption in nearly all theoretical and experimental investigations carried 



70 

I I  Upstream 
influence 

Interaction 

Wedge 

Instability 

wave 

c I, 

FIGURE 1. (a) Schematic drawing of basic features of jet-edge oscillation. (b) Frequency jumps, 
hysteresis, and definition of stages I and II. (c) Numerical coordinate transformation. 

out to date is that  the oscillating jet possesses a single predominant frequency of 
oscillation. Although one might detect only a single predominant frequency in the 
region well away from the edge (e.g. Powell 1961), a nonlinear oscillating jet actually 
shows the existence of multiple frequencies and their interactions (Lucas & Rockwell 
1984; hereinafter referred to as LR). The numerical results of the present paper verify 
this multiplicity of frequencies. Energy exchange between multiple frequency 
components must influence the amplitude of the predominant component of the jet, 
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the distribution of the pressure field on the wedge, and the surrounding sound field. 
In LR, a more general criterion was cited in characterizing these frequency jumps 
and hysteresis effects: a sudden increase in the number of multiple frequencies 
corresponds to a jump to a higher stage of oscillation and vice versa. The numerical 
results of this paper suggest this criterion is a valid one. 

Numerical results are obtained for the following aspects of the jet-edge flow: ( i )  
the spectral evolution of the jet from separation to impingement, ( i i )  detailed 
mechanics of vortex interaction at the edge, (iii) consequence of the feedback that 
modulates the sensitive region of the jet shear layers near separation, (iv) frequency 
jumps and hysteresis effects and (w) spectral analysis of numerically calculated wedge 
pressures and wedge torque and lift. Preliminary numerical results were presented 
in Ohring (1983). 

2. Mathematical formulation 
A numerical transformation is used that maps boundary-fitted coordinates (the 

boundaries being coordinate lines) in physical space onto a Cartesian coordinate 
system of a computational space. Poisson equations are used to generate the 
coordinates. These numerical mappings have become quite commonplace for the 
solution of fluid-flow problems (Thompson et al. 1975; Thompson, Warsi & Mastin 
1982). Figure 1 (c) shows the numerical mapping of the physical-space-coordinate 
system on the left onto the Cartesian-coordinate system of the computational space 
on the right. (A Cartesian mesh (not shown) overlays the computational space.) The 
physical domain represented in figure l ( c )  and schematically in figure 1 (a)  is 
geometrically identical, for the channel-wedge configuration, with the apparatus a t  
Lehigh University, Bethlehem, Pennsylvania (LR) used for conducting physical 
experiments for the jet-edge problem under consideration. The physical domain is 
symmetrical about the channel centreline. The coordinate origin is at the centre of 
the channel nozzle. Non-dimensional lengths and heights are shown in figure l ( c )  
and are scaled by the width of the channel. The non-dimensional length L (=  L‘/6, 
figure 1 a )  of the distance from the nozzle opening to the wedge tip is 7.5. Physical- 
space boundaries map onto computational-space boundaries. The wedge-shaped body 
maps onto the slit in computational space. Geometrical corner points are excluded 
from the grid under the mapping. The total number of grid points is 39481. 

A vorticity (a)-stream-function ($) formulation of the Navier-Stokes equations is 
employed so that the velocity field is automatically divergence-free. The vorticity- 
transport equation and the Poisson equation for the stream function $ are written 
in computational-space coordinates (where the computation will be performed) as 

‘1 J-l ,  (1) 
awE5 - 2&,, + ywl/,, + vo,, + rw 

Re J 

J is the Jacobian of the transformation. Derivatives for P and Q are evaluated a t  
the outer boundaries B to produce orthogonal grids at the outer boundaries of the 
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physical space and to  retain, as much as possible, outer-boundary gridpoint spacing 
in the interior (Plant 1977). 

With all velocities and lengths being scaled by U (the average velocity of the 
Couette flow in the channel) and 8 (the width of the channel), respectively, the 
following non-dimensionalization has been used : 

I n  the above, primed quantities are dimensional. The constants, p,  v are, respectively, 
the density and kinematic viscosity. Time and pressure are, respectively, t andp. The 
non-dimensional parameters Re and St are, respectively, the Reynolds number and 
Strouhal number (non-dimensional frequency), with f a dimensional frequency. 

From the analytic solution for Couette flow in a channel (Schlichting 1979) it  is 
easily shown (using the present scaling) that 

d p  12 - - - -- 
dx Re' 

where dpldx is the non-dimensional constant pressure gradient for the Couette 
flow. Based on (6), the following boundary conditions are employed (refer to 
figures l a  and c ) :  $ = -+, w = 0 at boundary I ;  $ = -4, $n = 0 (no slip) at 1'; $ = ?j, 

w = 0 a t  11; $ = 4, $n = 0 (no slip) a t  11'; $ = -&-2y3, w = 12y (Couette flow) at 
III; and $ = gb(t), $n = 0 (no slip) at the wedge-shaped body. (The subscript n refers 
to  the normal derivative at the boundary.) Note that portions of I' and 11' are, 
respectively, the upper (y = i) and lower (y = -4) channel walls. The function $b(t)  

is part of the solution and must be computed. Convective outflow conditions for w 
and $[ with convection by the local horizontal velocity (Mehta & Lavan 1975) are 
used at IV. 

All boundaries are walls except 111 and IV (the inflow and outflow boundaries, 
respectively). The condition w = 0 at  a wall is equivalent to  imposing perfect slip 
(Lugt & Ohring 1975). The large distance of the outer walls from the jet, in 
combination with this boundary condition, results in the jet being unaffected by the 
outer walls. The no-slip condition is applied a t  the near walls by computing the 
vorticity on those walls taking the no-slip condition into account. The value fib(t) 
at a time instant is computed using a procedure given in Sood & Elrod (1974) to keep 
the pressure single-valued in the flow field. 

The initial-boundary-value problem is completed with the initial conditions of 
Couette flow in the channel, potential flow elsewhere and vorticity sheets a t  no-slip 
walls 1', 11' and a t  the wedge-shaped body surface. 

Fluid pressure a t  the wedge, and also fluid-exerted torque and lift due to pressure 
at the wedge, have been computed. By taking a suitable linear combination of the 
Navier-Stokes equations expressed in computational-space coordinates one obtains, 
after non-dimensionalization, 

The reference pressure p, is arbitrarily set to zero a t  the centre of the upstream end 
of the channel (boundary 111 in figurcs 1 a and c). 

Equation (7) is first used to determine the pressure at the grid point on the lower 
side of the wedge nearest the tip. This is done by integrating (7),  in computational 
space, along the centreline from the upstream end of the channel (where p = p, = 0) 
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to the first grid point on the lower side of the slit. The pressure is then determined 
on the remainder of the body by integrating (7)  around the body surface. For this 
part of the pressure computation the last five terms of, the integrand are zero owing 
to the no-slip condition on the body. Single-valuedness of the pressure is assured by 
the solution process for $,,(t). The pressure at  the wedge is negative most of the time 
because of (6) and the choice of p,. 

Torque about the wedge tip and lift due to fluid pressure have been computed only 
at the surfaces of the wedge itself and not the afterbody. (Frictional forces contribute 
nothing to the total torque exerted on the wedge and are a negligible part of the fluid- 
exerted lift.) The total moment CM, and lift CL, per unit breadth due to fluid 
pressure are given by 

r r 
CM, = J (i) ps ds - ps ds, J ( i i )  

r r 
CL, = J ( a p ~ ~ ~ B d s -  pcosBds. 

J(i0 
(9) 

Here, (i) and (ii) refer, respectively, to the lower and upper wedge surfaces: s is the 
wedge surface arclength measured from the wedge tip and /3 = &n, half the included 
wedge angle. In  computational-space coordinates 

CM, = d CL,, 

where x, is the x-coordinate of the wedge tip, d is the fulcrum distance and use is 
made of the fact that dx = x5dt at  the wedge since dv = 0. The dimensional 
counterparts of C M ,  and CL, have been scaled, respectively, by p U V 2  and p V 6 .  

3. Numerical method 
Second-order finite differences replace derivatives throughout. An implicit, second- 

order (in time and space) Crank-Nicholson finite-difference procedure was used to 
advance the solution in time. At each time step several iterations were necessary to 
satisfy all the following convergence criteria. The percentage change from iterate to 
iterate in $b and wall-generated vorticity (at all no-slip walls) had to be less than 
1 yo with these convergence tests not applying if $b < 0.001 or < 0.05. In 
addition, the global L, error norm for w from ( 1 )  and for $ from (2) each had to be 
less than 0.001 for convergence. 

Each iteration consisted of a sweep of ( 1 )  followed by asweep of (2) using afour-colour 
overrelaxation scheme for each sweep with an overrelaxation factor of 1.6. These 
iterations were fully vectorized on the Cray 1-S upon which the numerical computation 
was performed. 

A device that proved useful was to obtain initial guesses for Ic. and w at a new time 
step by extrapolation from several previous time steps. A time step of 0.008 was used 
except for Re = 650, for which a time step of 0.006 was used. Much smaller time steps 
are used for all the cases near the sensitive time region of t  = 0. 

In  this paper Fourier analysis has been performed on discrete numerical data 
obtained from the numerical flow solutions by using the discrete Fourier transform. 
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Let {g,.}, r = 0,1,2,  ... , ( N -  l ) ,  be a series of discrete functional values of a function 
g equally spaced in time t such that T = NA, where T is the period, N is the number 
of equally spaced time intervals of the period, and A is the time interval. The discrete 
Fourier transform (Newland 1975, p. 116) of the series {gr}, r = 0, 1,2, . . . , ( N -  l ) ,  is 
given by - 1 N-1 

Qk = gre-i(znkr/N), k = 0,1 ,2 ,  ... , (N-1). 
r-0 

Here Qk in (13) is an approximation for 

where a, and b,  are the Fourier coefficients of the Fourier series for the continuous, 
periodic function g ( t )  with period T. Of particular interest is 

Ash? - - IGrl, k = 0,1,2,  ..., ( N -  1 ) .  (15) 

Notationally, the aggregate of amplitudes {Ask} ,  k = 0,1 ,2 ,  ..., (N-1) will be 
referred to as Ad in the text. 

A number of checks, procedures, and observations were employed to ensure 
reliability in the use of the discrete Fourier transform (13) and are outlined below. 

To obtain confidence that the maximum frequency that can be detected from data 
sampled at time spacing A (the so called Nyquist frequency 1/(2A)) was greater than 
any other frequency inherent in the time series and thus prevent aliasing (Newland 
1975, p. 120), 4N points (obtained by linear interpolation) as well as N points, for the 
period T were used as a check in the Fourier analysis of the time histories. Results 
showed no change of any significance in Fourier amplitude values. 

Care has been taken to choose in all cases T = ntts, n an integer, where i9 is the 
period of the dominant frequency $p. 

It was observed in all cases that lGkl + 0 as k + + N  (k = 0, 1 ,  ...,+ N )  well before 
k = +N. Usually lGkl was essentially zero beyond k = i N .  

The Fourier analysis has been applied directly to the numerical data from the 
numerical flow solution. No filtering of the numerical data has been used. Filtering 
of the numerical data is not justified because only a few cycles are used in the Fourier 
analysis owing to the present expense of flow computation. Experimentally, by 
contrast, tens of cycles of a continuous signal can be used in the Fourier analysis. 

For the Reynolds number equal to 650 case, A = 0.3. For all other Reynolds- 
number cases in this paper, A = 0.4. Values for T, N ,  and n will be given in $4. 

4. Numerical results 
Four Reynolds-number cases were considered in the present numerical study : 
( i )  Re = 250 (from t = 0 to t = 87.39). 
( i i )  Re = 650 (from t = 87.39 to t = 132.39). This case was abruptly started from 

the numerical solution for Re = 250 a t  t = 87.39. 
( i i i )  Re = 450 (from t = 132.39 to  t = 212.39). This case was abruptly started from 

the numerical solution for Re = 650 a t  t = 132.39 and will be denoted Re = 450 (from 
650). 

( iv)  Re = 450 (from t = 87.39 to t = 167.39). This case was abruptly started from 
the numerical solution for Re = 250 at t = 87.39 and will be denoted Re = 450 
(from 250). 
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FIGURE 2. Contour plots for Re = 250 at selected times 

4.1. Flow visualizations 

Figure 2 shows computer-drawn equivorticity lines a t  selected times for the numerical 
solution for Re = 250. (In the flow contour plots throughout this paper, equivorticity- 
line values are f 1, k2, ... and streamline values are .. . -0.2, -0.1,0, 0.1,0.2 . ... 
Negative equivorticity lines are dashed ; positive ones are solid. However, in regions 
of high grid-point density, the dashed lines will appear solid.) At t = 0, due to the 
initial conditions, the jet flow separates at the corners of the channel nozzle, resulting 
in starting vortices which are then convected downstream. (In this paper, vortices 
shed from the jet shear layers and the wedge are defined as regions of vorticity with 
a local extremum.) This is seen at t = 11.4. The effect of the starting vortices is very 
similar to the cast-off vortex from the trailing edge of a wing abruptly st.arted from 
rest (Goldstein 1938). The flow is still symmetric a t  t = 11.4. In nature the jet is 
unstable and therefore an asymmetric disturbance is abruptly introduced into the 
numerical scheme a t  t = 11.4. The disturbance consists of applying a ‘moving belt’ 
condition in the lower channel wall for 0.8 non-dimensional time units followed by 
application of the same condition in the upper channel wall for 0.8 time units. 

Because of lingering transient effects from the asymmetric disturbance and limited 
availability of computer time, a cycle for Re = 250 completely free of start-up 
transients was not obtained. (In the laboratory many cycles are required before 
periodic quasi-steady-state cycles free of start-up disturbances can be obtained for 
Re = 250, Rockwell, private communication.) However, the pictures from t = 67.4 
through t = 83.4 do show a cycle characterized by a complete jet oscillation. The 
pictures from t = 67.4 through t = 75.4 clearly show half a complete jet oscillation. 
The jet is below the wedge at t = 67.4 and the jet vortex (I: will induce a vortex of 



76 S .  Ohring 

opposite sign b on the lower side of the wedge due to viscosity (as seen at t = 75.4). 
The jet rises with the jet vortex a’ inducing a vortex of opposite sign b’ at the upper 
side of the wedge ( t  = 75.4). At t = 79.4, the jet drops below the wedge with vortex 
aii inducing vortex 6” on the lower side of the wedge. The jet oscillation should be 
completed at t = 83.4 but transient effccts interfere. However, the numerical results 
do show a long jet stem, the dominant feature for Re = 250 as seen in the laboratory, 
and the jet oscillating with a single predominant frequency which is designated as 
f P. This designation expresses the relationship of this frequency to another funda- 
mental frequency, P, which will shortly be discussed. At a particular side of the wedge, 
counter-rotating vortex pairs are formed at this same frequency fP (i.e. a ,  b and a”, 
b” pairs a t  lower wedge side) leading to  an upstream disturbance that modulates the 
sensitive region of the shear layer near the channel nozzle a t  frenquency $3. LR refers 
to a jet oscillating with a single predominant frequency as a stage I oscillation 
(figure 1 b ) .  Such an oscillation occurs a t  low values of Reynolds number. 

Figure 3 shows computer-drawn equivorticity lines a t  equal time intervals for the 
numerical solution for the case Re = 650 representing a jump to stage 11 oscillations 
from the stage I situation of Re = 250. Streamlines are also shown for comparison 
with the equivorticity lines. 

At t = 102.4 is shown a large-scale vortex a (newly formed from the lower jet shear 
layer near t = 99.4) and two associated jet-shear-layer vortices a’ and b’. The vortex 
pair a’, 6’ is counter-rotating, i.e. a’ and b’ are of opposite sign, which slides 
underneath vortex a at impingement ( t  = 105.4) with part of the vortex pair a’, b’ 
intercepted by the wedge. Meanwhile, the large-scale vortex a’’ (newly evolved from 
the upper jet shear layer at t = 102.4) and two associated jet-shear-layer vortices aiii 
and b”’ of opposite sign, forming the counter-rotating vortex pair a“’, b”’, are visible 
at t = 108.4. The vortices a’’’ and b i I i  slide beneath vortex aii a t  impingement with 
part of the counter-rotating vortex pair a”’, b”’ intercepted a t  the wedge a t  t = 114.4. 
The process just described, from approximately t = 99.4 to  t = 117.4, constitutes one 
complete jet oscillation cycle or flapping up and down of the jet. The cycle repeats, 
with vortices aiV, av, and bV, from t = 117.4 on. Note that the vortices a’’’ and b”’ 
rotate about the large vortex aii from t = 114.4 to t = 120.4. (A similar process occurs 
a t  t = 120.4 and t = 123.4 involving vortices a’” and av, bV and to  a lesser extent for 
vortices a, a’, b’ a t  t = 105.4 and t = 108.4 due to  diffusion.) 

The complete time period of the jet oscillation cycle is tl corresponding to the rate 
of formation of large-scale vortices a ,  a’’ (i.e. the time period from t = 102.4 to 111.4 
is one half cycle, the other half cycle is from t = 1 1  1.4 to 120.4). Large-scale vortex 
aiv at  t = 120.4 represents the start of the repetition of the cycle. During the complete 
jet oscillation cycle negative sign (clockwise rotating) vortices a ,  a’, biii are generated 
in the lower jet shear layer and positive sign (counterclockwise rotating) vortices a”, 
a”’, b’ are generated in the upper jet shear layer. The a, a’’ vortices correspond to  
every third jet shear-layer vortex. Thus, each incident jet shear-layer vortex is 
generated at frequency P. It will be shown from Fourier analysis that the upstream 
influence of the set (of large vortices u ,  aii) which occurs a t  frequency dominates 
the region of the jet near separation at  the nozzle. Since each incident shear-layer 
vortex interacts with the wedge, substantial upstream influence at frequency /3 also 
occurs as shown from Fourier analysis later in this paper. The frequency :P, 
corresponding to one-half of a jet oscillation cycle, will be shown later in the paper 
to be one of the dominant frequencies for the wedge pressure, torque and lift. 

The time tip for a complete oscillation cycle for Re = 650 (from visual inspection 
of figure 3) is 18 time units. (Fourier analysis will show i t  to be approximately 17.7 

3 a  



Calculations of self-excited impinging jet jlow 77 

time units). The time tip for an oscillation cycle for Re = 250 (from visual inspection 
of figure 2) is approximately 16 time units, which is roughly the same as tip for 
Re = 650. Therefore, to summarize, the low-frequency component $, which is the 
most unstable frequency of the stage I oscillation (Re = 250; figure 2), exists in 
stage 11 (Re = 650; figure 3) also, owing to a remarkable readjustment of the vortex- 
edge interaction patterns with increasing Reynolds number. The $ p component is 
associated with large-scale vortex formation at the edge ; in stage I, these vortices 
arise from shear-layer instability at fb, while in stage 11 they result from growth and 
interaction of the incident vortices of the unstable jet shear layer at frequency p, 
giving rise to the vortex patterns of figure 3 which are in good agreement with vortex 
patterns obtained experimentally for Re = 600 (LR; Kaykayoglu & Rockwell). 

Later in the paper it will be shown for Re = 450 (from 650) and Re = 450 (from 
250) that tQ is approximately 17.1 and 17.9, respectively. Thus, for the Reynolds- 
number cases considered in this paper from Re = 250-650, the Strouhal number St 
associated with the frequency fa is approximately 0.06. LR found St = 0.04 for a 
range of Re = 250-1300. Their physical experiments used a breadth-to-width ratio 
of 48 for the nozzle. 

Experimentally it has been found that different channel span-to-width aspect 
ratios and different channel-span end conditions (whether open or closed) can produce 
changes of 20-25 yo in the value of St. However, the core flow is two-dimensional along 
the span (Rockwell, private communication). Numerically, in this paper, the nozzle 
breadth-to-width ratio is infinite. This and other subtle differences between the 
numerical and experimental method and their respective global geometries could 
easily account for this discrepancy for St. The important thing here is that both 
methods agree on their description of the dominant frequencies p and and the 
resultant flow processes. 

The motivation for considering the cases Re = 450 (from 650) and Re = 450 (from 
250) was based on the concept of frequency jumps and hysteresis effects in jet-edge 
systems which was first considered by Powell (1961) and has subsequently received 
considerable attention, as summarized by Rockwell (1983). Although efforts had 
largely focused on the variation of a single predominant frequency component in 
characterizing these jumps and hysteresis effects (see figure 1 b and discussion in fj l ) ,  
LR proposed a more general criterion : a sudden increase in the number of frequencies 
(whose component amplitudes are at least 10% of the maximum component 
amplitude) corresponds to a jump to a higher stage of oscillation and vice versa. They 
found experimentally that for increasing Re there is a sudden increase in the number 
of frequency components in the range 450 < Re < 550 and that for decreasing Re, 
there is a sudden decrease in the number of frequency components in the range 
300 < Re < 375. These two ranges are very close to the values for which Powell 
observed upward and downward jumps respectively in the predominant frequency 
of oscillation on the basis of far-field microphone measurements and are indicated 
schematically by the vertical arrows in figure 1 ( b ) .  

Therefore, one should expect the Re = 450 (from 650) case, where the Reynolds 
number is decreased, to (i) have flow patterns very similar to Re = 650 and ( i i )  to 
retain the number of multiple frequencies of Re = 650. For the case Re = 450 (from 
250), where the Reynolds number is increased, one should expect the flow patterns 
to exhibit to a certain extent the flow patterns of the higher stage 11 (Re = 650) while 
retaining some of the aspects of the flow patterns of the lower stage I (Re = 250). This 
should be so since Re = 450 is right at the edge of the lower end of the Reynolds-number 
range where a jump occurs to a higher stage 11 when increasing the Reynolds number 
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FIGURE 3. Time sequence of contour plots for Re = 650. 



Calculations of self-excited impinging j e t  flow 79 

t =  111.4 

t = 114.4 

t = 117.4 

t = 120.4 

t = 123.4 

F’IQURE 3 ( m t . )  



80 S.  Ohring 

136.4 

144.4 

148.4 

152.4 

156.4 

164.4 

168.4 

172.4 

W W 

FIGURE 4. Time sequence of contour plots for Re = 450 (from 650). 
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FIGURE 5. Time sequence of contour plots for Re = 450 (from 250). 
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from below. A moderate increase in the number of multiple frequencies from that of 
Re = 250 is also expected for Re = 450 (from 250) for the reasons just given. The 
aforementioned expectations are borne out in the computational results, thereby 
displaying the concept of frequency jumps and hysteresis effects. 

Figures 4 and 5 show equivorticity lines for cases Re = 450 (from 650) and 
Re = 450 (from 250), respectively. Note that the same notation for the vortices is 
used as for Re = 650 and that the time intervals between consecutive pictures is now 
4 time units rather than 3 time units used for Re = 650. 

For Re = 450 (from 650) in figure 4, the flow patterns are strikingly similar spatially 
and in time to those of Re = 650, despite an increase in diffusion effects. 

For Re = 450 (from 250) in figure 5, the flow patterns are strikingly similar to  those 
of Re = 650 from t = 91.4 to  t = 127.4. However, at t = 131.4, one sees a long jet stem 
impinging on the wedge, which is the dominant feature of Re = 250. From t = 135.4 
to t = 147.4 the flow pattern gradually assumes the characteristics of Re = 650 but 
is again interrupted at t = 151.4 with the characteristics of Re = 250, that  of the long 
jet stem impinging on the wedge. From t = 155.4 to t = 167.4 the flow pattern again 
starts to  resemble that of Re = 650. Thus, the flow patterns of Re = 450 (from 250) 
are similar to those of Re = 650 most of the time but, unlike Re = 450 (from 650), 
have the dominant feature of Re = 250 at other times, thereby indicating a partial 
jump to a stage 11 oscillation while showing some hysteresis effects. 

Figure 6 shows a global view of the flow patterns for Re = 650 a t  t = 132.4 in the 
entire physical domain upon which the calculations are performed. The flow is 
essentially irrotational throughout the time histories of all Reynolds-number cases 
considered in this paper downstream of the body in figure 6. 

4.2. Numerical spectral results along the jet 
Figure 7 shows transverse velocity (v velocity component) time histories for Re = 250, 
Re = 650 and Re = 450 (from 650) and figure 8 shows transverse-velocity time 
histories for Re = 250, and Re = 450 (from 250). The time histories are taken a t  the 
centre of the jet (y = 0) for three values of x / L :  x / L  = 0.06844 (by channel mouth); 
x / L  = 0.56388 (approximately halfway to  wedge t ip);  and x / L  = 0.9787 (by the 
wedge tip). L is the non-dimensional distance from the nozzle opening to  the wedge 
tip. In  this paper L is 7.5. All distances have been scaled by the width of the channel. 

For Re = 250, tia was obtained from visual inspection of the flow field discussed 
earlier. Experimentally, for Re = 250, i t  has been found that the j/3 frequency 
dominates and grows along the entire length of the jet with a higher harmonic $/9 
setting in and persisting as the jet approaches the wedge tip. The velocity traces for 
Re = 250 in figures 7 and 8 show transient effects from the initial start-up of the flow. 

For Re = 650 and Re = 450 (from 650) (whose traces very closely match those of 
Re = 650, thereby again displaying hysteresis effects) the velocity time histories at 
x / L  = 0.06844 show dominance of the low-frequency modulation component $/3 
arising from upstream influence of the large-scale vortex interaction a t  the wedge. 
The period corresponding t o  the frequency of vortex formation /3 in the jet shear layer 
is slightly detectable a t  x / L  = 0.06844 and a t  x / L  = 0.56388 and 0.9787 it becomes 
quite pronounced. Both i/3 and /3 are dominant frequencies which grow along the jet. 

For Re = 450 (from 250) in figure 8, the velocity traces are similar to those of 
Re = 650 and Re = 450 (from 650) except the p component is diminished a t  all three 
locations along the jet shear layer. This is in agreement with the flow visualization 
and discussion earlier for Re = 450 (from 250) since this case is a t  the edge of the Re 
range for a jump to a stage 11 oscillation from a stage I oscillation. The traces reveal 
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* 
FIGURE 6. Contour plots in the entire domain for Re = 650 at t = 132.4. 

a stage 11 oscillation with some features of a stage I oscillation (where only f / 3  
dominates along the jet) represented by the diminished /3 component along the jet. 

Spectral analysis was performed on the velocity traces (and later in this paper on 
wedge pressure, torque, and lift time histories) of the four Reynolds-number cases. 
For Re = 650, Re = 450 (from 650), Re = 450 (from 250), and Re = 250 the values 
{T, N ,  n} used for the spectral analysis in this paper were {35.4,118,2}, {51.2,128,3}, 
{53.6,134,3}, and {39.2,98,2}, respectively and the corresponding time intervals were 
te [96.7, 132.11, [138.8, 190.01, [90.6, 144.21, and r48.2, 87.41, respectively. These 
values and time intervals were selected on the basis of visual inspection of the flow 
fields and of tabulated and graphical displays of the traces. Only for Re = 250 is 
there a noticeable discrepancy between the visual inspection of the flow field and of 
the traces as regards ti . For Re = 250, visual inspection of the flow field gave 
ta x 16.0 while that of t a e traces gave ts = 19.6. This latter value was used in the 
Fourier analysis. The discrepancy is due to the approximate nature of a visual 
determination of a complete oscillation cycle for Re = 250. 

Figure 9 shows the growth rates of the spectral components ) /3, %/3, /3, !/3, %p of the 
vertical velocity along x / L  for y = 0 for the four Reynolds-number cases. In  all the 
Re cases the )/3 component has the largest amplitude for all values of x /L .  In all the 
Re cases the amplitudes of all the components in general grow with increasing x/L. 
The region with values x / L  very close to 1 (the wedge-tip area) is very sensitive 
numerically and inaccuracy may account for the mixed behaviour of the amplitudes 
in this region. For all Re-cases the largest amplitudes generally (for all values x/L) 
are those of $/3 and 8. The presence of these five multiple frequencies and more for 
all the Re-cases (except Re = 250) are due to the patterns of interacting vortices in 
the vicinity of the wedge that give rise to a multiple-frequency upstream influence ; 
corresponding conversion of this influence to vorticity fluctuations in the sensitive 
region of the shear layer near separation; and amplification of these multiple 
frequency disturbances (amplitude growth) in the downstream-evolving shear layer. 
The upstream influence excites (in primarily the f/3 and /3 components) the 
downstream-evolving instability wave. All the components of the instability wave 
may be related to sum and difference frequencies of the primary components )/3 and 
p, i.e. &3+mp (n, m integral) through nonlinear interaction between the f/3 and /3 
components throughout the instability wave. The spectral character of the modulated 
shear layer near the nozzle exit is the same as that incident upon the edge due to 
nonlinear growth of the instability wave. It should be stated that, for Re = 250, LR 
found, in experiments, multiple frequency components of smaller amplitude than 
those depicted in figure 9. Note that the /3 component for Re = 450 (from 250) is 
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FIQURE 7. Transverse-velocity time histories at three locations along the jet centreline (y = 0) 
for Re = 250, Re = 650, and Re = 450 (from 650). 
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FIQURE 9. Growth of spectral-component amplitudes of the transverse velocity along the jet 
centreline (y = 0). (The components fB, $p.  p,  tB, and $/3 are represented by the symbols, 0, A, 
0 ,  x , and 0 ,  respectively.) 
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generally not as large as the t4 component for Re = 450 (from 650) for all xlL, which 
agrees with previous results regarding these two Re cases. 

Figure 10 shows the amplitude growth of the low-frequency component $3. The 
persistence in shape of the amplitude distributions for all the Re-cases is quite 
remarkable. In all cases there is an initial growth region near the channel mouth and 
a secondary growth region near the wedge. The growth rates along the jet centreline 
are much the same for all Re-cases. 

Figures 9 and 10 are in a format similar to figures found in LR. Although their 
Re-cases are somewhat different from those in this paper, the results, in general, 
compare quite favourably. It should be noted that their results are scaled by U,, the 
undisturbed horizontal Couette velocity component a t  y = 0, whereas results here are 
scaled by the mean Couette velocity U which is one-third smaller. Therefore, 
dimensionless amplitude results here are 50 yo larger. 

Figure 11 shows time-history traces of vorticity measured near to and away from 
the nozzle opening for the four Reynolds-number cases. Four traces have a value of 
zero and were measured at points 1 to 4 in figure 12 (a) having (2, y) coordinates: 
( -  2.7437, & 3.2324), and ( - 1.7784, f 2.2685). Four other traces were measured at 
points 5 to 8 in figure 12 (a) .  These four locations were symmetrically placed (two on 
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FIWRE 11.  Vorticity time histories at selected locations near and away from the nozde opening 
for Re = 250,650,450 (from 650), 450 (from 250). Point location, (x, y)-coordinates of point location, 
and plotting symbol for point locations Ti to 8 are, respectively, 5: (0.6850, 0.4375), 0; 6: (0.7052, 
0.3125), x ; 7 :  (0.6850, -0.4375),#; 8 :  (0.7052, -0.3125), X .  

either side of the jet centre) within the jet just downstream of the nozzle opening. 
In general, the two positive traces mcasured a t  points 5 and 6 are antisymmetric to 
the two negative traces measured a t  7 and 8, respectively, but with a phase shift of 
approximately tip, (i.e. when traces 5 and 6 are minimum in absolute value, 7 and 
8 are maximum in absolute value). The dominant period of the traces is tip as is 
expected. 

4.3. Numerical spectral results for  wedge pressure, torque, and lift 

In  figure 12 ( b )  are shown the five locations 1 to 5 corresponding to the distances 0.0, 
0.2475,0.75, 1.5, and 3.0, respectively, measured along the lower wedge surface from 
the wedge tip where pressure time-history traces were obtained. 
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FIQURE 12. (a )  Schematic drawing (drawn to scale) indicating locations of points 1 to 8 (for 
figure 1 1 )  in physical domain. ( b )  Locations 1 to 5 where wedge pressure time histories are taken. 
(c) Schematic drawing for torque C M ,  and lift CL,. 

Figures 13-15 show, on the left, amplitudes of spectral components for the pressure 
traces which are shown on the right for Re = 650, Re = 450 (from 650), and Re = 450 
(from 250), respectively. Spectral analysis for the upper wedge surface is the same 
as that of the lower. For all Re-cases the dominant component is E/3. At the tip we 
expect f/? to be the dominant component because the pressure at the tip cannot 
discriminate between large-scale vortices that sweep upward or downward past the 
tip, so that, for example, the large-scale vortices associated with the f/3 component 
(i.e. a", aiv in figure 3) on the upper or lower wedge surface produce a $b component 
a t  the tip. The amplitude of the 2$ component decreases slowly as the :/3 
component increases along the wedge surface moving away from tip in all the Re 
cases. This is particularly noticeable for Re = 450 (from 650) and Re = 450 (from 250). 
These results generally agree with that of Kaykayoglu & Rockwell for Re = 600 
except that  they find the component %/3 decreasing much faster away from the tip 
so that the components $/3 and /3 become dominant, with /3 then decreasing even 
further away from tip and t/3 continuing to grow. The components :/3 and /3 are 
expected to  become dominant away from the tip since 4/3 is the frequency at which 
large-scale vortices (i.e. aii in figure 3 )  are swept away from the edge and /3 is the 
frequency a t  which vortices (i.e. b"' in figure 3) pass along the surface of the edge. 
I n  the present results the /3 component does not stand out. (It should be remembered 
that the wedge-tip region is very sensitive numerically and experimentally.) The 
spectral results which most clearly show the expected dominance of the $/3 and j/3 
components are obtained for Re = 450 (from 650) which also clearly shows the $ p  
component. 

Figure 16 shows torque C M ,  and lift CL, (see figure 12c) time-history traces for 
the Re cases and figure 17 shows spectral-component amplitudes for these traces. The 
numerical integrations for CM, and CL, are performed along the complete extent 

4 ELM 163 
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13. Spectral component amplitudes (on the left) for the corresponding wedge pressure time 
histories (on the right) at the five locations of figure 12(b)  for Re = 650. 
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FIGURE 14. Same as figure 13 but for Re = 450 (from 650) 
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FIGURE 15. Same as figure 13 but for Re = 450 (from 250). 

of the wedge surfaces only and not the afterbody (figure 12c). The wedge is the focus 
of attention and no numerical pressure evaluations were made on the afterbody. 
Presumably, the pressure time fluctuations downstream of the wedge along the 
afterbody die out since the flow there is nearly steady (see figure 6). Since CM, and 
CL, are given by integrals of the pressure (equations (8) and (9)), the $3 and /3 
components are expected t o  dominate. The dominant component is f p in all the Re 
cases. The /3 component, as expected, is also prominent especially for Re = 650 and 
Re = 450 (from 650). The case Re = 450 (from 650) once again has spectral results 
which show most clearly the expected dominance of the components Sp, f /3, p, and 

Table 1 (a  and b )  displays amplitudes of frequency components, which are a t  least 
10 o/o of the maximum amplitude, for the transverse-velocity time histories a t  
x / L  = 0.7875 and y = 0. Note in table 1 (a)  the increase in the number of frequencies 
for Re = 450 (from 250) over that of Re = 250 which strongly suggests a partial jump 
to a stage 11 oscillation according to the criterion of LR. I n  table 1 ( b )  the number 
of frequencies is essentially maintained when going from Re = 650 to Re = 450 (from 
650), strongly suggesting hysteresis at the stage 11 level. Note that the number of 
frequencies is greater in table 1 ( b )  than table 1 (a). Also note that the /3 component 
for Re = 450 (from 250) is substantially less than that of Re = 450 (from 650). These 
results agree with those concerning the visualization of Re = 450 (from 650) and 
Re = 450 (from 250) discussed earlier. 

@ 
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FIGURE 17. Spectral component amplitudes of the torque and lift traces of figure 16 for 
Re = 650,450 (from 650), and Re = 450 (from 250). 

5. Conclusions 
A numerical computer-solution process has been used to calculate self-excited 

impinging jet flows. A vorticity/stream-function formulation has been used to solve 
the Navier-Stokes equations numerically, providing vorticity which is difficult to 
measure experimentally. The numerical solutions show the basic features of the 
oscillation cycle for both stage I (with the +/3 component dominating) and stage II 

(with frequencies +b and /3 dominating) oscillations. The main features are ( i )  growth 
of disturbances in the jet shear layer, ( i i )  formation of vortices near, and pressure 
fluctuations at, the surface of the wedge, ( i i i )  upstream influence of this shear- 
layel-edge interaction to the sensitive region of the shear layer, and (iw) conversion 
of these perturbations to velocity fluctuations near the separation edge at the nozzle 
opening, allowing subsequent amplification in the downstream region of the shear 
layer. 

The multi-frequency-component character of this class of unstable flows emerges 
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TABLE 1.  ( a )  Multiple-frequency content of oscillating jet (v component) at x / L  = 0.7875 on 
centreline ( y  = 0) indicating increase in number of spectral components (with amplitude of 10% 
of maximum amplitude) for Re = 450 (from 250) over that of Re = 250. ( b )  Multiple-frequency 
content of oscillating jet (v component) at x / L  = 0.7875 on centreline (y  = 0) indicating number 
or'spectral components (with amplitude of 10 yo of maximum amplitude) is essentially unchanged 
for Re = 450 (from 650) as compared to K P  = 650. 
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naturally from the numerical simulation, agreeing well with the corresponding 
experimental investigation of LR. These multiple frequency components are associated 
with nonlinear interaction between the fundamental instability frequency p of the 
jet, and a low-frequency modulation component +p. The fact that  these two 
components, as well as other sum and difference frequencies, emerge from the 
calculation suggests that  the numerical approach used in this paper could be 
employed in predicting the multi-frequency-component structure in a number of other 
free shear flows. Also of importance is the fact that  these multi-frequency components 
arise from a two-dimensional rather than a three-dimensional instability of the planar 
jet. This may be the first time that this feature has been recognized, since most free- 
shear-layer experiments involving nonlinear instabilities include, by the very nature 
of the experiment, a degree of three-dimensionality. Only by numerical simulation, 
such as that brought forth in the present paper, can one conclusively ascertain the 
two-dimensionality of the mechanism. 

The phenomena of frequency jumps and hysteresis has been considered with the 
numerical results in general agreement with those obtained experimentally, strongly 
indicating such effects. 

Surface-wedge pressure has been calculated with results in general agreement with 
experiment. 

Torque and lift calculations have been made and quite reasonable results have been 
obtained. Such quantities have not been measured experimentally. 

Numerical flow computations provide a comparison with experimental results 
(neither of which are infallible). Agreement between the two approaches provides 
confidence for both methods. Moreover, the numerical computations can provide 
information on flow quantities such as vorticity which are very hard to obtain 
experimentally. With the cost of computer usage continually being reduced, the 
numerical approach will play an increasingly important role in providing such flow 
results. 
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